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1. Introduction

A lot of work has been done towards the direction of developing communication

protocols that determine how a single common resource can be efficiently shared by a

large population of users. By now, it is well known that fixed assignment techniques are

not appropriate for a system with large population of bursty users. In the latter case, ran-

dom access protocols are more efficient and many of them have been suggested.[1], [2].

Usually, the amount of information transmitted per time is of fixed length, called a

packet. In most of the systems, time is divided into slots of length equal to the time

needed for a packet transmission (slotted systems).

The deployment of an ever increasing number of multi-user random access com-

munication networks, brought up the question of how packets whose destination is

another network, should be handled. Thus, the issue of network interconnection or

multi-hop packet transmission, arises, [3], [6], [7].

The basic problem in analyzing interconnected systems is that of characterizing the

output process of a multi-user random access communication system; i.e., the departure

process of the successfully transmitted packets. Another problem is how a random

access protocol operates in the presence of a nodeC that forwards exogenous traffic coming

from other networks. The latter problem can be avoided by assigning a separate channel

to the exogenous traffic. In this case, the operation of the system is not affected by the

exogenous traffic but the problem of optimum allocation of the available resources (chan-

nels), arises. The latter issue has been discussed in [3], where the objective is to maxim-

ize the throughput of the interconnected networks. In [31, delay analysis was not per-

formed and only simulation results were obtained.
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The output process of a multi-user random access communication system depends Alp

on the protocol that has been deployed. Description of that process is a difficult task and

only approximations based on special assumptions have been attempted, [41-[71.

In this paper, the output process of a multi-user random access slotted communica-

tion system is approximated by a process which depends on an underlying 3-state Mar-

kov chain and a stationary mapping rule. A visit to a state takes place at the end of a slot

and corresponds to one or zero departures, depending on the state and according to the

stationary mapping. The state space of the Markov chain is given by

S ={, 1, 21 ={I, S, C}

where 1(0), SMl and C(2), respectively, correspond to an idle, involved in a successful

packet transmission or involved in a packet collision, slot. The feedback information

available to the users at the end of each slot may not be ternary.

The motivation behind the adoption of the Markov model to approximate the output ,5.:.;

process is due to the fact that the output of the channel at the current time slot depends

strongly on the outcome in the previous slot. This dependence is introduced by the colli-

sion resolution algorithm that is always present in a random access multi-user communi-

cation system. Thus, an independent packet departure model would be both unrealistic

and intuitively not pleasing. On the other hand, a 2-state (arrival-no arrival) Markov

model would also be inefficient since idle and collided slots would correspond to the "-5

same state. Clearly, the behavior of the system in a slot following a no-arrival slot A

depends strongly on whether the no-arrival slot was an idle or a collided one. The latter

observation motivates the selection of the proposed 3-state Markov approximation of the

output process.

%%- .,..



4

In the next Section, the approximation model for the output process is introduced.

The algorithm, which is used as an example in this paper for conflict resolution within

the network, is also described in that section.

In section III, the steady state and state transition probabilities of the underlying

Markov chain are calculated as the average state and state transition probabilities of the

channel status, under the operation of the deployed random access algorithm.

In section IV, the queu~eing problem that appears in a central node which receives

and retransmits packets originating from N independent multi-user random access slotted

communication systems, is formulated. Then, a method is provided to calculate the

mean time that a packet spends in the central node. The latter is used as a measure of the

performance of the proposed approximation model of the output process.

In the last section, results for the average time that a packet spends in the central

node are presented and conclusions are drawn. The performance of the proposed approx-

imation of the output process is compared with that of a 2-state Markov approximation

and that of an independent packet departure process. Simulation results of the actual sys-

tem are also provided.

11. The approximation of the output process

We consider a system in which N independent multi-user random access synchron-

ized slotted communication networks, are present. It is assumed that the length of a slot -

is the same for all networks of the system. *
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Let {ix }j o denote the process that describes the state of the ih channel at the end of

the slots. The state space of {I X j>O is assumed to be given by

S'= {O, 1, 2} = {I, S,C} (1)

as it is explained in the Introduction. Since a packet appears in the output process if and

only if it is the only one transmitted within the corresponding slot, the output process of

the ith network, {af }jaO, can be clearly described via the mapping

ai(i)={1 if =1 (2)if =0, 2 "-.

The process {i{ } j is controlled by the deployed random access algorithm and it is

generally non-Markov. However, this process can be approximated by a Markov process

{x }j which has the same state space as {i{} jo and is ergodic within the stability

region of the random access algorithm. A Bernoulli model of the output process is

unrealistic due to the dependence introduced by the collision resolution algorithm. A 2-

state Markov model can also be inefficient for the reasons mentioned in the Introduction.

As an example, we consider multi-user random access slotted communication net-

works in which a binary (Collision/Non-Collision) feedback limited sensing collision

resolution algorithm is deployed. This algorithm has been developed and analyzed in

[111 and [101. There, analysis was limited to the derivation of the maximum stable

throughput and the average packet delay. The characterization of the process of the suc-

cessfully transmitted packets, i.e. the output process of the network, is still an open prob-

lem.

A brief description of the collision resolution algorithm is provided at this point.

Each user is assigned a counter whose initial value is zero (no packet to be transmitted).

~, - . - .. .N .. . . . . -,*---
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This counter is updated according to the steps of the algorithm and the feedback from the re
I~e

channel. Upon packet arrival, the counter content increases to one. Users whose counter

content is equal to one at the beginning of a slot, transmit in that slot. If the channel

feedback is collision (C), the counters whose content is greater than one increase it by

one; the counters whose content is one maintain this value with probability p (splitting -

probability) or increase it to two with probability 1-p. If the channel feedback is non-

collision (NC), all non-zero counters decrease their content by one. A detailed descrip- .

tion of the algorithm can be found in [10], [11].

To be able to apply the proposed 3-state Markov approximation of the output pro-

cess of a network that operates under the described collision resolution algorithm, the

steady state and state transition probabilities of the output process need to be calculated.

IIl. The steady state and state transition probabilities

Since the Markov model is only an approximation of the output process, it seems

natural to estimate the steady state and state transition probabilities of the Markov chain

by calculating the steady state probabilities that a particular state or state transition

occurs in the output process, under stable operation of the network. This calculation is -,

not always straightforward. The procedure to be followed depends on the class of ran-

dom access algorithms which has been employed.

In this section, we calculate these probabilities for a network in which a binary -.

(C/NC) feedback limited sensing random access algorithm has been deployed. The pro-

cedure that is followed can also be applied to a system in which some other limited sens-

ing algorithm is deployed. In the latter case, the complexity of the calculations may be

0 ""

~ ., . . . S * '/*.~*-* ~ ,, ;. % . % * % . % ~ ' . p .r '. .- °,

A - ~- .~d~ a~" % .
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increased.

An important quantity in the analysis of the random access algorithm under con-

sideration, is the session length. A technical definition of the session via the use of an

imaginary marker, can be found in [12], [13]. In essence, a session is a sequence of con-

secutive slots that starts and ends at points in which the system regenerates itself. The

multiplicity of a session is determined by the number of packet transmission attempts at

the first slot of a session.

The following quantities are useful in the analysis that is presented in this section.

ij-slot A slot that is in state i and it is followed by a slot in state j, i, j E{I, S, C}.

i-slot A slot that is in state i, i e{I, S, C1.

internal slot • An ij-slot is internal if both slots belong to the same session; i-slots are

always internal, i, j c {I, S, C}.

lk •Length of a session of multiplicity k (in slots).

Lk • Expe'cted value of 1k .

L Expected value of Lk with respect to k.

t (tk) Number of internal ij-slots (i-slots) in a session of multiplicity k,

i, j E {I, S, C}.

Tik (Tk/• Expected value of t (T).

TiJ (T') " Expected value of TkJ (Tk) with respect to k.

tU (tn) • Number of internal ij-slots (i-slots) in the nth session from the time origin.

tn Length of the nth session from the time origin (in slots). 0

.014

-'"S

. ,



N - X, IV W- V1 IV WU -" -T . . 7 -Y .Y -Y - I T .5I -7

q' (q"): Steady state probability of a slot in state i (steady state probability of a slot

in state i followed by a slot in state j), .t j £ 1, S, C

p(i,j): Conditional steady state transition probability of having a j-slot in the next

slot given that we have an i-slot in the current slot, i, j c {I, S, C}

The objective in this section is the calculation of the conditional and state probabili-

ties p(i,j) and q' respectively, i, j F- {1, S, C1. Clearly, p(i,j) can be obtained by divid-

ing the joint probability q'J by the state probability q', i, j c f{1, S, C}. Thus, it suffices

to calculate the probabilties q', qI], i, fl {, S, C}.

Under stable operation of the algorithm, the steady state probability of having a slot

involved in a successful transmission, q in the output process, is simply given by the

cumulative input rate to the network, ki. It should be noted that the validity of the results

that are obtained in this section is contingent upon the validity of the assumption that

Xi < Si, max, where Si, mxis the maximum stable throughput of the algorithm associated

with the ih' network.

As it will become clear later, an important quantity for the calculation of the proba-

bilities q',qJ, i,j E {I, S, C1, is the mean session length, L. The latter can be calculated

by following procedures similar to those that appear in [11], [12], [13], [14]. In fact, for

the specific algorithm under consideration, L has been calculated in [10] and [11], and

numerical results can be found in [101. For the completion of the calculations of this sec-

tion we start by calculating L.

From the description of the algorithm the following equations can be written.
-. -* * -. .*.~--...*.. . . . . . . .

2-zO
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Ik = I + 16, + F, + Lk-O, + F, k 2. (3b) %.

F, and F2 are Poisson random variables over T= 1 (length of a slot) with probability den-

sity Pf() ; 0 is Binomial with parameters k and p (p = .5) and probability density bk()•

By considering the expected values in (3) with respect to all random variables involved,

we obtain

L0 = 1 , L1=1 (4a)

k k
Lk= 1 + F, Pf(F 1) bk (01) LI+Fl + Pf(F 2 ) bk (O1)Lk-_0+F, k_.2. (4b)

F -O 6 =O F 2=O 01=0

The infinite dimensionality linear system of equations in (4) can be written in the general

form

Lk =hk + akjL , k O. (5)
j=O

The most widely used definition of stability is the one which relates it with the

finiteness of Lk, for k<oo. In [101, [II] it has been found that the system is stable for

X'i<Si, max = .36 (packets/packet length). The authors in [10], [111 were actually able to

find a (linear) upper bound on Lk which is finite for k<o. Si, max is then defined as the

supremum over all rates ?i for which such a bound, L', was possible to obtain. '

The existence of L' <00, for k<oo, implies that (5) has a non-negative solution, Lk; -

the solution Lk of the finite dimentionality system of equations

Lk =hk + ak L , 0-k<-J (6)
j=0

is a lower bound on Lk and Lk - Lk as J-*oo, I111, 141, 1151.

It turns out that for sufficiently large J (e.g. 15), Lk is extremely close to Lk and thus, "

for practical purposes, Lk is considered to be equal to Lk, especially for 'ki outside the

•.~
. ..,.,'.: .. ., './ " ,' *.'..'.'. ....' . .. .2/.'. ',, .,'. '... '" ".. ..'..,,". /,"...-,., _,

""
. . . . . . . . . . . . . . .-: -: -."-.','_-'-. -. ,: ." J -. -- -. -. ," -'0
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neighborhood of Si, . (The latter can be shown by calculating a tight upper bound on

Lk and observing that it almost coincides with Lk, see [111, 131, [141 for the procedure).

By solving (6) with akj and hk given by,

aj alj 0= 0 , OjJ (7a)
miinfj,k} k"- -

akj = Pf(J-0) bk (1) +  Pf(j-k+I) bk(,) , O J---J (7b)

-= max{k-j,O}

and

hk1 O<k<J (8)

we calculate the mean session length of multiplicity k. Since the multiplicities of succes-

sive sessions are independent and identically distributed random variables, the mean ses-

sion length, L, is calculated by averaging Lk over all k ; k is the number of arrivals in a

slot from a Poisson process with intensity X. In fact, the average for k!5J is sufficient.

In the next three sub-sections we calculate the steady state, q1, and joint, qJ, proba-

bilities, i, j C {I, S, C}.

III-A: Calculation of q!, C, CS.'

We start by calculating the joint probability qCI; i.e, the probability that a slot is

involved in a packet collision and the slot that follows is idle. By using the notation

which was introduced at the beginning of this section, the following equations can be

written.

": = 0 , CC1 9a -'
TO I (9a)

= '{01 ±F,=O} +T F1+ + Tk-O,+F , k-- (9b)

The definition of the session implies that the last slot of a session cannot be involved in a

S

...........-...-. °

4 :".- " .. " "" .- ".-...-.........."."....-"...".".-"."..""' -'""" '";'".""'".. "." ".'..'
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collision. Thus, all Cl-slots are internal slots and the equations in (9) take into considera-
S.

tion all possible Cl-slots that may appear in the output process.

By considering the expected values in (9) with respect to all random variables

involved, we obtain an infinite dimensionality linear system of equations with respect to

Tc 1 which is of the form of the one in (5). A truncated, up to J, version of that system

would be of the form of that in (6). In fact, the coefficients akj, 0 k<<J , 0<j<J, are also

given by (7), while the constants hk , 0k<_J are given by

hc x hC= 0 h C' Pf(O) bk (0) 2 k<_J. (10)

Since

T 1 < Lk (11)

and since Lk<-, for k<oo and X1j inside the stability region of the algorithm, it is implied

that the finite system of equations with respect to T c 1, On_<J, has a non-negative solu-

C1.

tion TC , 0<k<J, which converges to TCI as J-4->. The comments about the rate of the

convergence of Lk are valid for .k also. Thus, an extremely good approximation of the S"

mean number of Cl-slots in a session, Tcl, is obtained by averaging TC1 over all 0 k<.J.

By applying the law of large numbers we obtain the following expression for the

joint probability qCl.

M 1 MCI

n=l

M-400 l M-o n-M (12)qCI lim M = lim (

n=1 n=

Clearly, the random variables tQ' n>l are independent and identically distributed. The

same holds for tn , n>i. Since

%....................
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E{tnC}=TCl < ,  and E{t,}=L<oo (13)

by applying the strong law of large numbers to (12) we obtain, [181,

qC T (14)

To calculate the probabilities qI and qCS we follow exactly the same procedure. T',

and TcS are computed by solving finite dimensionality linear systems of equations of the

form of (6), whose coefficients are derived in Appendix A. Then, TI and TCs are com-

puted as in the case of Ico . Finally, the strong law of large numbers is again applied and

the probabilities q1 and qCI can be calculated by the following expressions.

I T' qCS =TCS
q q. (15)..

L L

There is an easier way to calculate the steady state probability of having an idle slot,

q', for the particular algorithm. This procedure utilizes a property of the binary rooted

tree which can describe the splitting operation of the algorithm. According to that pro-

perty, the number of terminal nodes is equal to the number of intermediate nodes plus ,

one. Since the intermediate nodes correspond to collisions and the terminal nodes

correspond to idle or successful slots, within a session, the following equation holds.

E+S- I =C

where E, S, C is the mean number of idle, successful or collided slots in a session. Since

S X L and

P E+S+C=L

we can calculate q' from the expression

qE 1+1 .-.qL I• -L -2 +2 L .

eS

-- " " ""- " " - " " -"" " -2 ' . ...- . " % -.' .. i- -. ; . .. ."' . - i-. . . . - .' .. '. - - ' .' . .' .' .' . " ' ---" - .
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IH-B: Calculation of gS and qSi

We start by calculating the joint probability qS. The probability that the last slot of

a session is idle will be needed and thus this quantity is calculated at first.

Let Ik be a random variable associated with the last slot of a session of multiplicity

k that takes the following values.

S0f if the slot is involved in a successful transmission
k{1 if the slot is idle.

From the operation of the algorithm it can be observed that the following equations hold.
.o

= = lk=l- 1 +F2 , k_>2. (16) -_

By considering the expected values in (16) we obtain the following infinite dimensional-

ity system of linear equations

ook

Li0 =1 , L =0 (7a) '."'

Lk E Pf (F2) bk (01) Lk--O +F2. (17b) -;-1
F2=o 01=0

Notice that L' is the probability that the last slot of a session of multiplicity k is idle and

thus L' I < , for k<-. The system in (17) is of the form of that in (5). By using the

same arguments as those used in the calculation of TCl we can solve a truncated, up to J,

version of (17) and obtain a very good approximation of L' . By averaging the latter over

all k:J, we can approximate Li, the probability that the last slot of a session is idle.

For the internal IS-slots of the output process, the following equations hold.

To = 0 o (18a)

= tIs+F I k-,+F2 + l ,r = I , k-t, +F 2 = .I (18b)

Notice that the idle slots which are the last of a session and are followed by a session of
.:-S..

I:. . . . . . . *.'.7



r

14

multiplicity 1 (that would give an IS-slot), are not considered by the expressions in (18).

By considering the expected values in (18), we obtain an infinite dimensionality N

system of linear equations with respect to TIs . The comments that were made in the cal-

culation of CIc apply to this case again and thus T's can be calculated by solving a trun-

cated version of the system in (18). The resulting finite dimensionality system is of the

form of that in (6) with coefficients akj, 0<j!!J, 0 5k<_J, given by (7) and constants given

by

h s = O  h's =0 (19a)

J-k J+1-k
h s = Pf(1) bk (k) Pf(F 1 ) Lk+F, + Pf(O) bk (k-i) 1 Pf(F1 ) L'I+F,. (19b)

F =0 F, =0

The average number of internal IS-slots in a session, TIs, is then approximated by

averaging T' s over all k<_J.

By invoking the strong law of large numbers and the ergodic theorem for stationary

processes, we prove in Appendix B that the joint probability qIS is given by the following -.

expression

s Ts!Lq + ie-  (20)L L

The joint probability qSI can be calculated by following a procedure similar to the

one developed in the calculation of q'S. The quantities and the equations that are

involved in this calculation are given in Appendix C.

II-C: Calculation ofQC, q c qt c, qSS, and qSc.

The steady state probability qC and the remaining joint probabilities are calculated

from the following balance equations of the probability mass.
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qC qqI qS

qCC = qC _qC1 _ qCS

q'1 = q' _ qSl _qC (21)

qSS S q S _ qCS

qC =q -q1 -qS
.-

SC S SI SS
q =q -q -q

In this section, the steady state, q', and the joint, qij, probabilities have been calcu-

lated, i, j c {I, S, C}. The transition probabilities P(i, j) of the Markov chain are calcu-

lated from the expression

pOij)= --  , i, j {I, S, C}.q

IV. Performance measure for the approximation of the output process.

In this section, a system that consists of a central node which receives and

retransmits packets originating from several random access communication systems, is

considered (Fig. 1 ). Each input stream represents the output process from a multi-user

random access slotted communication system; that is, the process of the successfully

transmitted within the latter system packets.

A packet arrival is declared at the end of the slot in which the packet was success-

fully transmitted. Thus, the arrival process to each input line is a discrete process. The

arrival points in all streams coincide; that is, the networks are assumed to be synchron-

ized and all slots are of the same length.

% 4.-l
I.
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The service time in the central node is constant and equal to one, which is assumed

to be the length of a slot. This implies that arriving and departing, from the central node,

packets have the same length. The first in-first out (FIFO) service policy is adopted.

More than one arrivals (from different input streams) that occur at the same arrival point

are served in a randomly chosen order. The buffer capacity of the central node is

assumed to be infinite.

The objective in this section is to calculate the mean time that a packet spends in the
,*.. .. ,

central node (waiting time plus service time), under the assumption that the output pro-

cess of a network is governed by an underlying 3-state Markov chain and a correspond-

ing stationary mapping rule. The mean time is used as a performance measure of the

proposed approximation model of the output process and it is compared with simulation

results of the actual system in the next section.

The selection of the particular system to measure the performance of the proposed

approximation, is due to the wide application that this system has. For example, such a

system appears in a multi-hop environment, where the destination of packets originating

from a multi-user random access network, is another network. Also, such a system may 'V

appear in a single hop environment. An example of the latter can be a packet radio

environment in which more than one networks operating in the same or neighboring

regions can use a common central node [191.

A discrete single server queueing system with finite number of independent input

streams and per stream arrivals governed by an underlying finite-state Markov chain, has

been analyzed in [181. The system that is considered in this section is a special case of

the general queueing system in [181. The state space of the Markov chain and the sta-

IrI
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tionary mapping are given by (1) and (2), respectively.

If the conditions ..

N
i < Si, max, 1 < i < N and ki <1

i= 1 ,..

are satisfied, then the queueing system is stable. The average number of packets , in

the central node can be calculated as the sum of the solutions of 3 N linear equations,

[181. Then, the mean time that a packet spends in the central node, D, is given in con-

junction with Little's formula, by the following expression.

QN -(22)

i= 1 ,.. ''KK.

Note that under stable operation of the networks (i < Si, max , 1 5 i < N), the adopted

mapping rule in (1) implies that the input rate of the ith stream to the central node is

equal to the input rate to the corresponding network.

Let us denote by i and y7 the N-dimensional vectors that describe the states of the N

Markov chains in two consecutive time slots, x, -y, E S = SIx S2 x...xSN. Let p(j;y) denote.

the probability that there are j packets in the central node and that the N-dimensional

Markov chain is in state -, and let P(z ; y) be the corresponding generating function. K'

Then, the average number of packets in the system, Q, is given by the sum of the solu- %

tions of 3 N linear equations, [ 181. These equations are given by

N y'[2(v-1) P (l;x)+(v-1)(v-2) P (l;X)+2(v-1) p(0,)l=0 (23a),.'

V--O i F, %

and any 3 N 1 from the following:

N
(];y-)= £ -)P(J;-) + P (;-+p(O 1p(-. (23b)'-v=0O i F, '.-
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The unknown quantities in (23) are P'(1;y), T E S; P'(1;y-) denotes the value of the

derivative of P(z;y) at z=1. The set F, is given by

Fv =fx= (Xl "XN)ES " ai(xi) -

Since the input streams to the central node are independent, we have that,'N.

N N
P(x, Y) =l pi (xi, YO) , p(0;-) = P0 Hl 71i (xi) ,

i=l i=l

N
P(l;x) = 7t(-x) = l ni(Xi)"

i=, %

where Ti(xi) and pi(xi, yi) are the steady state and state transition probabilities of the

Markov chain associated with the ith input stream and P0 is the probability that the cen-

tral node is empty. The latter is given by, [181,

N

i=l1

By solving the 3N linear equations that are given by (23) and summing up the solu-

tions, the average number of packets in the central node, Q, is obtained. Then, the mean

time that a packet spends in the system is given by (22).

V. Results and conclusions

In this section, the performance of the proposed approximation model of the output r

process is compared with the performance of the actual system and that of some other

approximations. The mean time that a packet spends in a central node which receives

and retransmits packets originating from N=2 and N=3 multi-user random access net-

works, is used as the performance measure.
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We consider a multi-user random access slotted communication network in which

the binary (C/NC) feedback limited sensing collision resolution algorithm, described in

section 11, is deployed. For this network, the output process is approximated as described

in the Introduction. The steady state and state transition probabilities of the Markov

chain are calculated according to the procedures developed in section Ill.

In the sequel, we consider systems of N=2 and N=3 networks, as those described

above, that feed a central node. The mean time that a packet spends in the central node is

calculated as it is described in the previous section. The results (in slots) are shown in

Tables 1 and 2, together with the results obtained from the simulation of the actual sys-

tern. It can be clearly observed that the results obtained under the proposed approxima-

tion of the output process are very close to those obtained from the simulation, especially

for total input traffic rate to the central node less than .99.

In Table 3, the values of the steady state and state transition probabilities that were

computed from the procedures developed in section III, are compared with the

corresponding values obtained from the simulation of the actual system. The coin-

cidence (up to the second decimal point ) between the analytical and the simulation ,

results, show that the estimation of those probabilities, by solving truncated systems, is

extremely good. The difference between the results which appears for small X~ and for "-

the probabilities that involve collisions, is due to the fact that very few collisions appear

for those values of X and thus the simulation results are not reliable.

If the output process of a network is approximated by a process in which departing

packets from the same network are independent, then the resulting queueing system in

the central node has been studied and the mean time that a packet spends in the central
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node, D1 , is given by, [81,

N N ..%

n=1 m>n

n=1 n=1

The results for D, and for N=2 and N=3 appear in Tables I and 2, respectively.

If the output process of a network is approximated by a 2-state Markov chain

(arrival, no-arrival), then the resulting queueing system in the central node has been stu-

died in [9] and the mean time that a packet spends in the central node, DM, is given by

N NF1 Yn

n=l m>n I -Yn
DM =N N

(Xn) IXn
n=1 n=1

where yn P(1/1) - P(1/0) and where P(1/1) and P(1/0) denote conditional probability of

arrival given arrival in the previous slot, and arrival given no-arrival in the previous slot,

respectively. Clearly, DM can be also obtained by solving 2N equations, according to the

procedures described in the previous section. The results for DM and for N=2 and N=3

appear in Tables I and 2, respectively.

By examining the results in Tables I and 2, we conclude that when the total input

traffic to the central node is less than .99 and the input traffic to each network is substan-

tial ( .25), then the proposed approximation is the best among all considered in this sec-

tion. The proposed approximation performs also well for light traffic. The 2-state Mar-

kov approximation seems to perform better for light input traffic to each network. In this

range of input traffic, the simulation results are not very reliable since arrivals and espe-
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cially collisions are very rare. Furthermore, the differences among the results is so small

that concllusions is not easy to be drawn. On the other hand, for substantial input traffic

to each network, the 2-state Markov model fails completely. This was expected since the ""

latter model fails to identify idle slots from collided and there is a substantial number of

the latter in the output process.

,"

,1'
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, Indep. 2-Markov 3-Markov Sim. T Net. Del.

.10 1.06 1.02 1.03 1.00 1.97 ,.

.20 1.08 1.17 1.09 1.02 3.33

.25 1.25 1.14 1.03 1.05 5.30

.30 1.37 1.23 1.10 1.12 11.38

.33 1.48 1.31 1.21 1.21 30.00

.35 1.8 1.41 1.31 1.30 87.70

Table I.(N=2)

Indep. 2-Markov 3-Markov [ Sim. Net. Del.

.10 1.14 1.05 1.06 1.02 1.97

.20 1.50 1.24 1.37 1.21 3.33

.25 2.00 1.55 1.91 1.70 5.30

.30 4.00 2.82 4.24 4.27 11.38

.31 5.43 3.74 5.94 6.25 15.00

.32 9.00 6.03 10.16 11.37 20.00

.33 34.00 22.34 39.87 48.89 i 30.00

Table 2.(N=3)

.%

X .01 .10 .20 .30 .33
Anal-Sim Anal-Sim Anal-Sim Anal-Sim Anal-Sin

S .010-.010 .100-.100 .200-.200 .300-.300 .330-.330

.887-.887 .730-.731 .460-.461 .327-329

.013-.013 .070-.069 .240-.239 .343-.341
qC .246-.210 .215-.212 .184-.184 .156-.155 .148-.147

qCS .496-.530 .463-.466 .424-.424 .384-.385 .372-.373

q .258-.260 .322-.323 .392-.392 .460-.460 .480-.480

q .985-.985 .845-.846 .665-.668 .408-.410 .294-.297

qSS .015-.015 .138-.137 .256-.252 .359-.358 .390-.388 ..,-

qS *** .017-.017 .079-.079 .233-.232 .316-.315

q .990-.990 .902-.902 .800-.799 .653-.653 .548-.550
q 7 i .009-.(X)9 .090-.090 .164-.1 4 .217-.219 .225-.225

q .*** j '007-.007 .037-036 I.130-'1 S .227-.225

• .9899-.9899 ** .0001-.0001

• .00016-.007 * * 000075-.00007

Table3. ,11

...,
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Appendix A

From the description of the algorithm, the following equations can be written.

0~~ 1,

tk 0,+F + Tk 0,+F2 ,k 2

and

= l{~±F, +CS _0 C = 0 .-
ro; --1! -

k - =+I + -O+F + k->+F 2  k _

where the random variables involved have been defined before. By considering the

expectations in the above equations and by truncating the resulting system of linear equa-

tions, we obtain a finite systems of the form of (6) with coefficients gi.'en by (7) and con-

stants

h'= I h' 0 k 1

and

s= s0Pf()bk(1)+Pf(1)bk(0) , 2.

Appendix B3

In this Appendix we prove equation (20). Let us define the following random van-

ables.

Is  Iif the n lot of a session is an IS-slot
I n 0otherwise

Ni

Jpcts in th bNumb r of IS-slots of the tih sss ion

t , wLenmth of rhe v( session (in slots) 7

* ., " o
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Is -I if the v 'h session has a non-inLernal IS-slot

V 0otherwise 
.

Notice that 's is associated with the last slot of the vth session. A non-internal slot is

assigned to the session which its first slot belongs to.

The joint probability qlS can be calculated, by using the law of large numbers, from

the following expression.

M JIS

qS =lim .
M--- M

Nv"

The above expression can be written as

M M

S =v=1
-lim + lim

M-- 1 M M--- M
N v Nv

M% .( is M

Clalterno vails 1~ t v ar needntadietcllitiue

M v M V.
v=l V=1 ,.

Slim a+ lim

M M T- 1  M v(

Clearly, the random variables Nv, tv, v>_l, are independent and identically distributed

with mean value L < oo and T s < (since T s < L respectively. Thus, the strong law

of large numbers asserts that

MS

limqis TIs M-- Mv=-M- (131 )

L L ".'

The random variables v v 1, are not independent but { ls }> is a stationary pro-"'-

cess and 4's has expected value given by,".
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E{As5 I P{ (I-slot k 1) / last slot of a session}

where k denotes the multiplicity of the next session. Since the two events are indepen-

dent we can write that -,

E{I s I = L' Xe - ' < o, (B2)

The second term of the above product is the probability of having a session of multipli-

city 1. By applying the ergodic theorem for stationary processess to (B1), [17], and by

considering (B2), we obtain the expression in (20).

Appendix C

In this Appendix we present the procedure to calculate the joint probability qSI. Let

1', L' and Ls be defined as the quantities I', L' and L', respectively, by replacing the

term idle by the term success. Since the last slot of a session is either idle or involved in p. 5 .

a successful transmission we have that

., I Lk-

Ls I -V.

The equations that correspond to those in (18) are given by

ts1 'S = o

SI SI I'1.,.
T kt1+FI + k-lo+F 2 + I{ I , k-0I+F 2 =O0 , k 2

and the equations that correspond to those in (19) are given by

hos' 0 , hs =o 0:

J-k
hs' =Pf(O)bk(O) 1 Pf(FI)L'+F,

F, =0

Finally, qSl is given by the following expression which is similar to that in (20).

*",*sl*.. 41
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qSl T" - L'
qSK +e4! L

.y

TSI is calculated in the same way as TIS.

.

-

S.-L
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